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When managing natural systems, the importance of recognizing
the role of uncertainty has been formalized as the precautionary
approach. However, it is difficult to determine the role of stochas-
ticity in the success or failure of management because there is
almost always no replication; typically, only a single observation
exists for a particular site or management strategy. Yet, assessing
the role of stochasticity is important for providing a strong foun-
dation for the precautionary approach, and learning from past
outcomes is critical for implementing adaptive management of
species or ecosystems. In addition, adaptive management relies
on being able to implement a variety of strategies in order to
learn—an often difficult task in natural systems. Here, we show
that there is large, stochastically driven variability in success for
management treatments to control an invasive species, particu-
larly for moderate, and more feasible, management strategies.
This is exactly where the precautionary approach should be impor-
tant. Even when combining management strategies, we show
that moderate effort in management either fails or is highly
variable in its success. This variability allows some management
treatments to, on average, meet their target, even when failure is
probable. Our study is an important quantitative replicated exper-
imental test of the precautionary approach and can serve as a way
to understand the variability in management outcomes in natural
systems which have the potential to be more variable than our
tightly controlled system.
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The need to confront uncertainty in management has been
emphasized both generally (1, 2) and in the context of ideas

like the precautionary principle (3) and adaptive management
(4). Given this uncertainty, tools like structured decision making
and evidence-based conservation are designed to improve man-
agement outcomes (5, 6). However, these tools can be difficult
to use, as we often only have a single population to study and
manage. A full understanding of the issues determining optimal
management in the presence of stochasticity can be addressed
with an experimental approach and replication.

The need to include stochastic aspects is particularly impor-
tant in the control of invasive species, where there is often
only a single successful invasion event, after which a species
becomes established and continues to spread (7). Therefore, we
lack information on both the probability of successful estab-
lishment and the variability in spatial spread. For example,
lionfish in the Caribbean first appeared in the 1980s, but
recently their populations have expanded rapidly (8). Whether
local management actions to control lionfish fail or succeed,
it will still be unclear if the outcome resulted from the man-
agement strategy chosen, its implementation, or stochasticity.
To overcome issues of replication, trait-based risk assessments,
meta-analyses, and mathematical models (9) can all be used
to estimate probabilities of establishment and spread (7, 10,
11). A recently developed database of eradication programs
shows the varying species responses to management (12).

However, meta-analyses still suffer from study-design differ-
ences, environmental factors that differ between studies, and
publication bias (13).

Experiments—more specifically, tightly controlled micro-
cosms—provide replication and thus can properly quantify the
role of stochasticity. These types of experiments can be used
to address questions of general conservation concern (14).
Fryxell et al. (15) used experimental microcosms of ciliates to
understand how harvesting affected populations. They found
that a fixed-quota harvesting policy led to the highest extinc-
tion risk. In a follow-up study, Fryxell et al. (16) found that
reserves could prevent extinction of harvested populations.
Even in these controlled laboratory settings, there was still
variability in management outcomes. Similarly, work on inva-
sive species showed that spatial spread can be highly vari-
able, even across replicates with the same controlled laboratory
conditions (17).

Despite the global importance of understanding invasive
species, there is still limited empirical evidence on the effective-
ness of different control-strategy combinations (18, 19). This is
due, in large part, to the lack of replication (20). To control an
invasive species, we implement a particular strategy, or set of
strategies, in a single population. Suppose a combination of man-
agement actions fails; was it the wrong approach? The strategy
could be the best approach, but, instead, natural variability led
to failure. Suppose the strategy succeeds; could the same out-
come have been achieved at a lower cost? With either success or
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failure, will the same outcome occur the next time a similar situa-
tion arises? This is a general set of problems in management (21).
The success or failure of any management or conservation action
depends on both the chosen action and implementation, but also
the inherent variability present. This limits the effectiveness of
adaptive management in the system (4).

We use both a microcosm experiment and stochastic popula-
tion model (SI Appendix) to explore which strategy best controls
the spread of an invading species. The model builds on an earlier
model for the spatial stochastic dynamics of the flour beetle (Tri-
bolium castaneum) (17, 22), which we parameterize (SI Appendix,
Table S1 and Figs. S1–S3) for the related species, the confused
flour beetle (Tribolium confusum). The model includes specific
mechanisms (23) important for invasive species (e.g., disper-
sal and reproduction). Using the model, we choose a range of
strategies close to the optimum and test the strategies experi-
mentally. We then use the model retrospectively to study the
variability in management outcomes both between and within
treatments.

Results
With the parameterized model, we evaluated the effectiveness
of 2 treatment strategies: harvesting of beetles in each patch
and reducing dispersal (i.e., controlling the amount of time bee-
tles are allowed to disperse between patches using plastic gates)
(24). We then determined which combination of strategies either
reduced population size to low levels or limited the spatial
spread. There was large variability—not only between but also
within treatments (Figs. 1 and 2). With a management objective
to keep the population to less than 300 individuals, there was
high predictability of management outcomes for low and high
harvest rates (Fig. 1A). However, for intermediate harvest values,
there was a probability of 0.50 of keeping the population to less
than 300 individuals. To prevent spread past patch 3, either har-
vest rates had to be high enough, or, more importantly, dispersal
times had to be low (Fig. 1B).

We tested our model predictions using a model insect, the con-
fused flour beetle (T. confusum). Tribolium microcosms are an
excellent model invasive species for 3 reasons. First, Tribolium
microcosms have already been used to study spatial spread with
corresponding stochastic population models (17, 22). Second,
with microcosms, multiple replicates of the invasion process
are possible (17, 25). This is in contrast to invasions in nature,
which are rarely replicated. Lastly, Tribolium microcosms can
be tightly controlled in the laboratory (SI Appendix, Fig. S1).
This reduces other forms of error that can make differentiating
between treatments difficult. Thus, microcosms can act as a con-
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Fig. 1. Model predictions for management success. (A) Probability of
successfully keeping the population to less than 300 individuals after 6 gen-
erations for different harvest rates and lengths of dispersal. (B) Probability
of successfully preventing an invader from moving beyond patch 3 (of 6
total) after 6 generations for different harvest rates and lengths of disper-
sal. The curves are not smooth because the results come from stochastic
simulations.
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Fig. 2. Model predictions compared to experimental data for the spread
rate of beetles in landscapes (number of patches colonized per generation).
The solid lines represent the mean values from simulations. The shaded
regions represent the 95% quantiles of the simulations. The simulations
are for default parameter values (SI Appendix, Table S1). The filled circles
represent data from the actual experiment. Spread rates of zero indicate
extinction. The placement of points has been randomly perturbed to allow
for visual clarity. Med, medium.

trol in comparison to natural systems, which are rarely perfectly
observable (26). The specific control strategies of harvesting and
limiting dispersal can also be controlled precisely.

For each treatment, we censused the population each gen-
eration (Figs. 3 and 4 and Movie S1). In line with past work,
there was variability in spread rates across, and within, treat-
ments (Fig. 2). We found that population size and number of
patches invaded decreased with increased harvesting rate or
decreased dispersal time (Figs. 2–4). After only 6 generations, we
found clear differences between treatments. There was also an
interaction effect between the harvesting and dispersal control
strategies; higher harvest rates were particularly effective with
high levels of dispersal (Fig. 2 and SI Appendix, Table S3).

Because of the variability in spread rates, there was also vari-
ability in management outcomes. With a management goal of
reducing population size, if there was no harvest, or if harvest
rates were high, management outcomes were not variable, with
100% of the replicates failing, or accomplishing, the objective
(Fig. 3 and SI Appendix, Table S2 and Fig. S4). At intermediate
levels of harvesting, and particularly at low levels of dispersal,
management outcomes were more variable, with success rates
ranging between 0 and 62% (Fig. 3). Another objective was to
limit the spatial spread, as opposed to population size, of the bee-
tles. Here, again, there was variability in management outcomes
(Fig. 4 and SI Appendix, Table S3). This was particularly true for
intermediate values of harvesting, with success rates between 10
and 100% (Fig. 4).

Discussion
Combined, these results highlight an important message about
species management. Even in tightly controlled microcosms,
there was still significant variability in management outcomes.
This occurs even in a system where we have a very detailed,
parameterized simulation model—a challenging task in most
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Fig. 3. Total population size within each landscape over time for experi-
mental replicates. Each subplot represents a different control strategy, with
different levels of dispersal or harvesting. The management objective was to
limit the population to less than 300 individual beetles. If a replicate passed
into the indicated gray region, management was considered a failure. The
probability of success (fraction of replicates within a treatment with less
than 300 beetles in generation 6) is shown for each treatment. Dispersal,
harvesting, and generation time were all significant predictors (P < 0.01).
Combined, these 3 predictors explained 69% of the variation in successful
management using a binomial error model (SI Appendix, Table S2). Med,
medium.

natural systems (1). This shows the difficulty in evaluating
management programs and ultimately implementing adaptive
management (4). The effectiveness of a management program
depends on the control strategy chosen, implementation, and
stochasticity. Variability in management outcomes led to situa-
tions where, on average, a control strategy met the objective, but
was still most likely to fail. For example, when dispersal was high
with a medium amount of harvesting, on average, the treatment
achieved the target reduction in limiting spatial spread; yet, the
probability of success was only 40% (Fig. 4).

The levels of variability in management outcomes also depend
on species life history and the specific control strategy used
(Figs. 3 and 4 and SI Appendix, Figs. S5 and S6). This is in
line with past work using mathematical models or meta-analyses
focused on common characteristics (trait-based) of invasive
species. (7, 11, 27). In our experiment, a population with high dis-
persal rates (i.e., low levels of control on dispersal) produced the
most variability in management outcomes (Figs. 3 and 4). Impor-
tantly, we show that the variability in management outcomes
depends on the specific harvest and dispersal-control strategies
used. Moderate levels of harvest and dispersal were the most
susceptible to highly variable management outcomes. This is
concerning for managing natural systems, as it is often impossi-
ble to implement management strategies with such effectiveness.
Thus, we would expect that most real-life management programs
would experience large variability, and less predictability, in their
outcomes. The large variability in outcomes would also necessi-
tate an adaptive management approach that was adjusted to the
specific state of the system.

Another way to view the highly variable outcomes is that these
occur when the control strategy is close to what would be the
minimum effort or cost needed to control spread, on average.
Thus, these results illustrate the importance of what in similar
contexts has been called the precautionary approach (3). Just as
in fisheries where harvest below the deterministic optimum at a
potential cost in average profit can be important in long-term

sustainability, here, spending a bit more on control than what is
needed to guarantee success on average can make success much
more likely.

More generally, there has been little work done on under-
standing variability in management outcomes. This is largely
because natural systems typically lack replication, or replication
is only available in the context of recurrent decision prob-
lems, which provides only temporal replication. Yet, imple-
menting adaptive management relies on replication within and
across management treatments (4, 19). Agricultural experiments
are often replicated enough to understand the variability for
a particular management action. For example, Smith et al.
(28) examined the effect of different agricultural-management
strategies on crop-yield variability. They found that there was
much variability both within and between treatments. Other
work has suggested that microcosms could be used to bet-
ter understand problems of global concern (14). With this in
mind, our work addresses the variability in management out-
comes for invasive-species control. Fryxell et al. (15) did not
examine invasive species, but instead evaluated the effect of
different harvest strategies in ciliate Tetrahymena thermophila
microcosms. They found that population variability was greatest
for a fixed-quota harvest strategy. These results, combined with
our findings, highlight the variability in potential outcomes for
any one management strategy. Furthermore, our experiment was
in conducted in a highly controlled, laboratory setting. In natural
systems, even larger variability in management outcomes might
be expected.

Our study should be extended in several important ways. Nat-
ural variation in dispersal or growth rates from year to year
could increase uncertainty of success when controlling spatial
spread. Also, we examined only a single species, but in many
systems, species interactions are important in the context of
invasive species (18, 29, 30). Additionally, because we used a
microcosm system, there were no explicit costs or benefits to
managing our populations. In a real system, determining these
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Fig. 4. Population size in each patch within each landscape for generation
4 for experimental replicates. Each subplot represents a different control
strategy, with different levels of dispersal or harvesting. The management
objective was to prevent spread past patch 3. If a replicate passed into the
indicated gray region, management was considered a failure. The probabil-
ity of success (fraction of replicates within a treatment with no beetles past
patch 3) is shown for each treatment. Dispersal, generation time, and the
interaction between harvesting and dispersal were all significant predictors
(P < 0.01). Combined, these 3 predictors explained 40% of the variation in
successful management using a binomial error model (SI Appendix, Table
S3). Med, medium.
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costs and benefits is crucial when selecting an optimal control
strategy (26, 31–33). Issues of management costs are espe-
cially important when using multiple strategies in tandem—like
population harvesting and controlling dispersal (34). This was
particularly relevant in our experiment, where there was a clear
interaction effect between our management strategies (Fig. 2
and SI Appendix, Table S3). Our experiment also presents an
ideal approach to compare human- and model-based strategies
of managing ecosystems (35, 36). Past work, in less-realistic,
computer-simulated studies, has shown that predictions from
models were similar to subjective judgement, but there was more
bias with subjective judgement (35). Thus, more realistic, but still
replicated, microcosm systems can be used to test and compare
different approaches to management, while also accounting for
costs and benefits explicitly.

Further work in natural systems is needed to evaluate the
variability in management outcomes (1). In particular, it would
be beneficial to understand the strongest predictors of manage-
ment variability. This would ultimately determine the level of
predictability and confidence we can have in a management pro-
gram. We can then use decision-science tools, like stochastic
dynamic programming, to manage in the face of this uncer-
tainty (37). We hope our study inspires future empirical and
theoretical analysis on the variability in ecological management
outcomes.

Materials and Methods
Experimental Design. We obtained confused flour beetles (T. confusum)
from stock populations maintained in 4-× 4-× 6-cm containers with 30 mL
of flour and yeast medium. We set up 6-patch landscapes connected by a
small dispersal channel (2-mm diameter). We filled each patch with 20 g of
standard medium (95% flour and 5% brewer’s yeast). We maintained pop-
ulations within incubators at 31 (± 0.2 SD) ◦C and 52 (± 4.5 SD) % relative
humidity (SI Appendix, Fig. S1).

On day 1, we inoculated patch 1 with 20 individual adult beetles. These
beetles were allowed to lay eggs (with no dispersal allowed) for 24 h. Adult
beetles were then removed from each patch by using a sieve. On day 41,
we allowed adult beetles to disperse for a set number of hours. We con-
trolled dispersal time by closing and opening gates (plastic screens) that
were placed between patches. On day 42, we censused the number of adult
beetles. Then, we placed a fraction of adults in fresh medium. The frac-
tion of adults was set by a harvesting function. There are many different
possible harvesting strategies (38). We chose a fixed-proportion strategy (a
fraction of beetles were harvested from every patch each generation) for
its simplicity. In cases where a fixed proportion of harvesting resulted in a
fraction of a beetle, we rounded up and harvested a whole number of bee-
tles. For example, 30% of 41 beetles = 12.3 beetles; therefore, 13 beetles
would be harvested. We then had adult beetles lay eggs for 24 h before
being removed.

We used a 4 × 3 factorial design to test the effects of harvesting and
dispersal on invasive-species management. We had harvest rates of zero

(H = 0), low (H = 0.25), medium (H = 0.5), and high (H = 0.75). We exam-
ined 3 levels of dispersal: 1, 6, or 24 h per generation. This design resulted
in 12 different landscape treatments (including a control with no harvesting
and 24 h of dispersal). To ensure high statistical power (39), we replicated
each treatment 10 times for a total of 120 landscapes (720 total patches),
and we ran the experiment for 6 generations (36 wk).

We used a generalized linear model with a binomial error structure (and
logit link function) to determine the probability of success or failure for each
management strategy. Predictor variables were the levels of harvesting and
dispersal, their interaction, and generation (SI Appendix, Tables S2 and S3).
We examined residuals from the models for normality and homogeneity
assumptions.

Dispersal Experiment. We conducted additional experiments where we var-
ied the time of dispersal to estimate parameters for a dispersal kernel to be
used in the full stochastic model. We placed 75 adult beetles in patch 1 of a
landscape. We let them lay eggs for 24 h and then removed them. Beetles
were allowed to develop for 41 d before the gates were opened to allow
dispersal. Gates were open for either 1, 6, 12, 24, or 48 h. Each patch was
then censused to see how far beetles moved (SI Appendix, Fig. S2).

Previous work designed a similar dispersal experiment to parameterize
dispersal kernels in a population model (17). They found that a Poisson
dispersal kernel with extra variation given by a Dirichlet-multinomial dis-
tribution was the best-fitting dispersal kernel for the related species T.
castaneum. Thus, we fit our dispersal experiment data to parameterize
the same dispersal kernel (equations 2, 3, and 7 in the supplement to ref.
17). Using maximum-likelihood estimation, we found that D = 0.38 and
s = 46.32 (SI Appendix, Table S1).

Recruitment Experiment. We inoculated individual patches with different
starting densities of adult beetles. They were allowed to lay eggs for 24 h,
and then the adults were removed by using a sieve. At the end of 6 wk,
we censused beetles in line with the methods described in the main exper-
iment (Experimental Design). In total, we had 5 replicates for each of the
following densities: 2; 4; 8; 16; 32; 64; 100; 150; 300; 500; 750; and 1,000.
We also included an additional 59 replicates of an initial beetle density of
75 from the experiment on fitting the dispersal functions. We then com-
pared the density after 1 generation to the initial densities (SI Appendix,
Fig. S3).

Melbourne and Hastings (22) parameterized a family of stochastic Ricker
functions for a similar species, T. castaneum. They found that the most
detailed model (including demographic stochasticity, stochastic sex determi-
nation, environmental stochasticity, and demographic heterogeneity) was
the best-fitting model. We used this negative binomial–binomial–gamma
Ricker model (for model equations, see p. 5 and table 1 in the supplement
to ref. 22) and fit it to our data by using maximum likelihood.

Data Availability. All of the data and code used in this manuscript are avail-
able at https://github.com/eastonwhite/species-management-variability (40).

ACKNOWLEDGMENTS. E.R.W. was partially supported by an NSF Graduate
Research Fellowship. A.H. was supported by NSF Grant DEB-1457652. B.A.M.
was supported by NSF Grant DEB-1457660. A team of undergraduates in the
“Beetle Lab” helped run the experiment.

1. M. A. McCarthy, Contending with uncertainty in conservation management decisions.
Ann. NY Acad. Sci. 1322, 77–91 (2014).

2. E. J. Milner-Gulland, K. Shea, Embracing uncertainty in applied ecology. J. Appl. Ecol.
54, 2063–2068 (2017).

3. C. J. Walters, Is adaptive management helping to solve fisheries problems? Ambio 36,
304–307 (2007).

4. M. J. Westgate, G. E. Likens, D. B. Lindenmayer, Adaptive management of biological
systems: A review. Biol. Conserv. 158, 128–139 (2013).

5. W. J. Sutherland, A. S. Pullin, P. M. Dolman, T. M. Knight, The need for evidence-based
conservation. Trends Ecol. Evol. 19, 305–308 (2004).

6. M. W. Schwartz et al., Decision support frameworks and tools for conservation.
Conserv. Lett. 11, 1–12 (2018).

7. D. M. Lodge et al., Risk analysis and bioeconomics of invasive species to inform policy
and management. Annu. Rev. Environ. Resour. 41, 453–488 (2016).

8. M. A. Albins, M. A. Hixon, Worst case scenario: Potential long-term effects of
invasive predatory lionfish (Pterois volitans) on Atlantic and Caribbean coral-reef
communities. Environ. Biol. Fish. 96, 1151 (2013).

9. J. M. Drake, D. M. Lodge, Allee effects, propagule pressure and the probability
of establishment: Risk analysis for biological invasions. Biol. Invasions 8, 365–375
(2006).

10. A. M. Liebhold et al., Eradication of invading insect populations: From concepts to
applications. Annu. Rev. Entomol. 61, 335–352 (2016).

11. G. M. Palamara, F. Carrara, M. J. Smith, O. L. Petchey. The effects of demo-
graphic stochasticity and parameter uncertainty on predicting the establishment of
introduced species. Ecol. Evol. 6, 8440–8451 (2016).

12. J. M. Kean et al., Global eradication and response database. http://b3.net.nz/gerda
Accessed 28 April 2019.

13. J. Koricheva, J. Gurevitch, Uses and misuses of meta-analysis in plant ecology. J. Ecol.
102, 828–844 (2014).

14. T. G. Benton, M. Solan, J. M. J. Travis, S. M. Sait, Microcosm experiments can inform
global ecological problems. Trends Ecol. Evol. 22, 516–521 (2007).

15. J. M. Fryxell, I. M. Smith, D. H. Lynn, Evaluation of alternate harvesting strategies
using experimental microcosms. Oikos 111, 143–149 (2005).

16. J. M. Fryxell, D. H. Lynn, P. J. Chris, Harvest reserves reduce extinction risk in an
experimental microcosm. Ecol. Lett. 9, 1025–1031 (2006).

17. B. A. Melbourne, A. Hastings, Highly variable spread rates in replicated biological
invasions: Fundamental limits to predictability. Science 325, 1536–1539 (2009).

18. A. Lampert, A. Hastings, E. D. Grosholz, S. L. Jardine, J. N. Sanchirico, Optimal
approaches for balancing invasive species eradication and endangered species
management. Science 344, 1028–1031 (2014).

19. R. Serrouya et al., Saving endangered species using adaptive management. Proc. Natl.
Acad. Sci. U.S.A. 116, 6181–6186 (2019).

20. Y. M. Buckley, Predicting invasion winners and losers under climate change. Proc.
Natl. Acad. Sci. U.S.A. 114, 4040–4041 (2017).

23172 | www.pnas.org/cgi/doi/10.1073/pnas.1911440116 White et al.

D
ow

nl
oa

de
d 

at
 P

al
es

tin
ia

n 
T

er
rit

or
y,

 o
cc

up
ie

d 
on

 N
ov

em
be

r 
30

, 2
02

1 

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1911440116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1911440116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1911440116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1911440116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1911440116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1911440116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1911440116/-/DCSupplemental
https://github.com/eastonwhite/species-management-variability
http://b3.net.nz/gerda
https://www.pnas.org/cgi/doi/10.1073/pnas.1911440116


www.manaraa.com

EC
O

LO
G

Y

21. E. T. Game, P. Kareiva, H. P. Possingham, Six common mistakes in conservation priority
setting. Conserv. Biol. 27, 480–485 (2013).

22. B. A. Melbourne, A. Hastings, Extinction risk depends strongly on factors contributing
to stochasticity. Nature 454, 100–103 (2008).

23. M. C. Urban et al., Improving the forecast for biodiversity under climate change.
Science 353, 1113 (2016).

24. J. Blackwood, A. Hastings, C. Costello, Cost-effective management of invasive species
using linear-quadratic control. Ecol. Econ. 69, 519–527 (2010).

25. M. L. Vahsen, K. Shea, C. L. Hovis, B. J. Teller, R. A. Hufbauer, Prior adaptation,
diversity, and introduction frequency mediate the positive relationship between
propagule pressure and the initial success of founding populations. Biol. Invasions
20, 2451–2459 (2018).

26. T. M. Rout, J. L. Moore, M. A. McCarthy. Prevent, search or destroy? A partially
observable model for invasive species management. J. Appl. Ecol. 51, 804–813 (2014).

27. K. M. Kettenring, C. R. Adams, Lessons learned from invasive plant control experi-
ments: A systematic review and meta-analysis. J. Appl. Ecol. 48, 970–979 (2011).

28. R. G. Smith, F. D. Menalled, G. P. Robertson, Temporal yield variability under
conventional and alternative management systems. Agron. J. 99, 1629–1634 (2007).

29. Y. M. Buckley, Y. Han, Managing the side effects of invasion control. Science 344,
975–977 (2014).

30. E. S. J. Rauschert, K. Shea, Competition between similar invasive species: Modeling
invasional interference across a landscape. Popul. Ecol. 59, 79–88 (2017).

31. R. S. Epanchin-Niell, A. Hastings, Controlling established invaders: Integrating eco-
nomics and spread dynamics to determine optimal management. Ecol. Lett. 13,
528–541 (2010).

32. A. L. Moore, M. A. McCarthy, On valuing information in adaptive-management
models. Conserv. Biol. 24, 984–993 (2010).

33. J. Firn et al., Priority threat management of invasive animals to protect biodiversity
under climate change. Glob. Chang. Biol. 21, 3917–3930 (2015).

34. A. Lampert, A. Hastings, How to combine two methods to restore populations cost
effectively. Ecosphere 10, e02552 (2019).

35. M. A. McCarthy et al., Comparing predictions of extinction risk using models and
subjective judgement. Acta Oecol. 26, 67–74 (2004).

36. M. H. Holden, S. P. Ellner, Human judgment vs. quantitative models for the
management of ecological resources. Ecol. Appl. 26, 1553–1565 (2016).

37. I. Chadès et al., Optimization methods to solve adaptive management problems.
Theor. Ecol. 10, 1–20 (2017).

38. C. M. J. Strevens, M. B. Bonsall, The impact of alternative harvesting strate-
gies in a resource-consumer metapopulation. J. Appl. Ecol. 48, 102–111
(2011).

39. E. R. White, Minimum time required to detect population trends: The need for long-
term monitoring programs. BioScience, 69, 40–46 (2019).

40. E. R. White, Species management variability. GitHub. https://github.com/eastonwhite/
species-management-variability. Deposited 9 September 2019.

White et al. PNAS | November 12, 2019 | vol. 116 | no. 46 | 23173

D
ow

nl
oa

de
d 

at
 P

al
es

tin
ia

n 
T

er
rit

or
y,

 o
cc

up
ie

d 
on

 N
ov

em
be

r 
30

, 2
02

1 

https://github.com/eastonwhite/species-management-variability
https://github.com/eastonwhite/species-management-variability

